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CONNECTIVITY

Multi-hop connecting at least two users (source and
destination) distant in space. Existence of routes.
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CONNECTIVITY

Multi-hop connecting at least two users (source and
destination) distant in space. Existence of routes.

Percolation theory provides tools to study macroscopic
connectivity.

First passage percolation to study the speed of message
propagation on long routes.

Mostly qualitative results.

Comparisons methods for non-Poisson models.

We shall present some results on connectivity and
routing on the SINR graph.
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Ad-hoc (D2D) Network

Network made of nodes arbitrarily repartitioned in some
region, exchanging packets either transmitting or receiving
them on a common frequency, use intermediate
retransmissions by nodes lying on the path between the
packet source node and its destination nodes.
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Ad-hoc = random, usually Poisson

Nodes “arbitrarily” placed ≡ modeled as an instance of a
point process. Usually Poisson.

more regular Poisson more clustering
(sub-Poisson) (super-Poisson)
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CONNECTIVITY
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Macroscopic connectivity
via percolation
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Gilbert graph – a simplest connectivity model

Gilbert graph C(Φ, r) on Φ:
edge between any two points which
are closer than r from each other.

Interference free model.
Equivalent to connectivity of
Boolean model on Φ with spherical
grains of radius r/2.
Another name: Random Geometric
Graph.
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Gilbert graph – a simplest connectivity model

Gilbert graph C(Φ, r) on Φ:
edge between any two points which
are closer than r from each other.

Interference free model.
Equivalent to connectivity of
Boolean model on Φ with spherical
grains of radius r/2.
Another name: Random Geometric
Graph.

Full connectivity not possible for any finite r in case of
homogeneous Poisson Φ on Rd and many other interesting
processes.
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Poisson-Gilbert graph — macroscopic view

The largest component in the window is highlighted.
– p. 9



Poisson-Gilbert graph — largerr

The largest component in the window is highlighted.
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Percolation — large scale connectivity

Percolation ≡ existence of an infinite connected subset
(component).

Well accepted notion of “minimal connectivity property”
of a large network, which might not be fully connected.

Indicates existence of a non-negligible “connected core”
within the network.
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Critical radius for percolation

Critical radius for the percolation of the Gilbert graph on Φ:
rc(Φ) = inf

{

r > 0 : P(C(Φ, r)percolates) > 0
}
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Critical radius for the percolation of the Gilbert graph on Φ:
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Critical radius for percolation

Critical radius for the percolation of the Gilbert graph on Φ:
rc(Φ) = inf

{

r > 0 : P(C(Φ, r)percolates) > 0
}

In the case when Φ is stationary and ergodic

0

1

c
grain radius r

r

probability of percolation

Usually, the no closed form expression for rc.
If 0 < rc <∞ we say the phase transition is non-trivial.
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Non-trivial phase transition for Gilbert graph

THM:For dimension d ≥ 2 percolation of the Gilbert graph
on Poisson point process exhibits non-trivial phase transition

0 < rc(λ) <∞

for all values of intensity λ of Poisson process.
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Non-trivial phase transition for Gilbert graph

THM:For dimension d ≥ 2 percolation of the Gilbert graph
on Poisson point process exhibits non-trivial phase transition

0 < rc(λ) <∞

for all values of intensity λ of Poisson process.
In fact,

rc(λ) =
rc

λ1/d
.

The exact value of rc is not known. For d = 2, rc ≈ 0.636.
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Percolation in SINR coverage model

Dousse, F. Baccelli, and P Thiran (2003),

Dousse, Franceschetti, Macris, Meester, Thiran (2006)
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Increasing node density may destroy infinite component(s)!
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Percolation for non-Poisson processes
by clustering comparison
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Clustering of points

Clustering in a point pattern roughly means that the points
lie in clusters (groups) with the clusters being spaced out.

Point processes having the same intensity (on average the
same number of points per unit of space).
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Clustering and macroscopic connectivity

less clustering more clustering
Gilbert graph with highlighted the largest component in the window.
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Clustering and macroscopic connectivity

less clustering more clustering
Gilbert graph with highlighted the largest component in the window.

Increasing r.
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Clustering and macroscopic connectivity

less clustering more clustering
Gilbert graph with highlighted the largest component in the window.

Increasing r.

– p. 20



Conjecture: Clustering worsens percolation

Point processes exhibiting more clustering should have
larger critical radius rc for the percolation of their continuum
percolation models.

Φ1 “clusters less than” Φ2 ⇒ rc(Φ1) ≤ rc(Φ2),

where rc(Φ) = inf
{

r > 0 : P(C(Φ, r)percolates) > 0
}
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Conjecture: Clustering worsens percolation

Point processes exhibiting more clustering should have
larger critical radius rc for the percolation of their continuum
percolation models.

Φ1 “clusters less than” Φ2 ⇒ rc(Φ1) ≤ rc(Φ2),

where rc(Φ) = inf
{

r > 0 : P(C(Φ, r)percolates) > 0
}

Heuristic: Interconnecting well spaced-out clusters (necessary to
obtain an infinite connected component) requires large r. Spreading
points from clusters "more homogeneously" should result in a
decrease r for which the percolation takes place.
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Comparison tools

dcx ordering of pp. Natural extension of dcx ordering of
random vectors (recall Ross’s conjecture), a
generalization of convex ordering of random variables.
Larger in dcx pp represent more variability (in probability
and in state space — clustering).
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Comparison tools

dcx ordering of pp. Natural extension of dcx ordering of
random vectors (recall Ross’s conjecture), a
generalization of convex ordering of random variables.
Larger in dcx pp represent more variability (in probability
and in state space — clustering).

Comparisons of void probabilities and all higher-order
factorial moment measures. Statistically larger voids and
moments — more clustering.

Positive and negative association of pp. Way of
comparing dependence of points to the complete
independence property of Poisson pp.

Statistical tools. Ripley function, correlation function, ...
(local hence relatively weak tools).
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Voids and moments

Void probabilities: ν(B) = P (Φ(B) = 0), bounded Borel
sets (bBs) B.
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Voids and moments

Void probabilities: ν(B) = P (Φ(B) = 0), bounded Borel
sets (bBs) B.

Moment measures:
αk(B1 × . . .×Bk) = E

(

∏k
i=1 Φ(Bi)

)

for all (not

necessarily disjoint) bBs Bi.
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(

∏k
i=1 Φ(Bi)

)

for all (not

necessarily disjoint) bBs Bi.

Factorial moment measures: α(k)(·) for simple pp,
truncation of the measure αk(·) to “off the diagonals”
{(x1, . . . , xk) ∈ (Rd)k : xi 6= xj for i 6= j}
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Voids and moments

Void probabilities: ν(B) = P (Φ(B) = 0), bounded Borel
sets (bBs) B.

Moment measures:
αk(B1 × . . .×Bk) = E

(

∏k
i=1 Φ(Bi)

)

for all (not

necessarily disjoint) bBs Bi.

Factorial moment measures: α(k)(·) for simple pp,
truncation of the measure αk(·) to “off the diagonals”
{(x1, . . . , xk) ∈ (Rd)k : xi 6= xj for i 6= j}
In a general (not necessarily simple pp) {α(k)(·) : k} can
be expressed in terms of {αk(·) : k} and vice versa.
Each of the three families of three functionals (voids,
moments and factorial moments) determine the
distribution of pp.
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Voids & moments and clustering

The “most spatially homogeneous” (“non-clustering”)
way of spreading points of Φ, with a given mean
measure α(·), would be to place them according to the
(deterministic) measure α(·). But this is not a point
process.
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way of spreading points of Φ, with a given mean
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(deterministic) measure α(·). But this is not a point
process.

Consider the probability that Φ deviates from α(·) on B
by more than a: P (|Φ(B)− α(B)| ≥ a).
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(deterministic) measure α(·). But this is not a point
process.

Consider the probability that Φ deviates from α(·) on B
by more than a: P (|Φ(B)− α(B)| ≥ a).
Smaller these probabilities indicate less clustering (more
homogeneity).
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Voids & moments and clustering

The “most spatially homogeneous” (“non-clustering”)
way of spreading points of Φ, with a given mean
measure α(·), would be to place them according to the
(deterministic) measure α(·). But this is not a point
process.

Consider the probability that Φ deviates from α(·) on B
by more than a: P (|Φ(B)− α(B)| ≥ a).
Smaller these probabilities indicate less clustering (more
homogeneity).

Voids and moments allow for upped bounds on these
probabilities→ concentration inequalities.
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Concentration inequalities

Chernoff’s bounds:
P (Φ(B)− α(B) ≥ a) ≤ e−t(α(B)+a)

E
(

etΦ(B)
)

and
P (α(B)− Φ(B) ≥ a) ≤ et(α(B)−a)

E
(

e−tΦ(B)
)
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Chernoff’s bounds:
P (Φ(B)− α(B) ≥ a) ≤ e−t(α(B)+a)

E
(
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)

and
P (α(B)− Φ(B) ≥ a) ≤ et(α(B)−a)

E
(

e−tΦ(B)
)

E
(

etΦ(B)
)

and E
(

e−tΦ(B)
)

can be expressed in terms of
moments and voids of Φ, respectively.

Indeed: E
(

etΦ(B)
)

=
∑∞
k=0
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k!
αk(B)
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Concentration inequalities

Chernoff’s bounds:
P (Φ(B)− α(B) ≥ a) ≤ e−t(α(B)+a)

E
(

etΦ(B)
)

and
P (α(B)− Φ(B) ≥ a) ≤ et(α(B)−a)

E
(

e−tΦ(B)
)

E
(

etΦ(B)
)

and E
(

e−tΦ(B)
)

can be expressed in terms of
moments and voids of Φ, respectively.

Indeed: E
(

etΦ(B)
)

=
∑∞
k=0

tk

k!
αk(B)

and
E
(

e−tΦ(B)
)

=
∑∞
k=0 e

−tk
P (Φ(B) = k) = P (Φ′(B) = 0)

is the void probability of the point process Φ′ obtained
from Φ by independent thinning with retention probability
1− e−t. Ordering of voids is preserved by independent
thinning.
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Comparison to Poisson pp — Laplace ordering

Consider pp Φ having voids and moments smaller than
Poisson pp (of the same mean). We call them weakly
sub-Poisson (a weaker comparison than dcx).
P (Φ(B) = 0) ≤ e−E(Φ(B)) for all bBs B (V)

E

(

∏k
i=1 Φ(Bi)

)

≤
∏k
i=1 E(Φ(Bi)) for all disjoint Bi (M)
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Comparison to Poisson pp — Laplace ordering

Consider pp Φ having voids and moments smaller than
Poisson pp (of the same mean). We call them weakly
sub-Poisson (a weaker comparison than dcx).
P (Φ(B) = 0) ≤ e−E(Φ(B)) for all bBs B (V)

E

(

∏k
i=1 Φ(Bi)

)

≤
∏k
i=1 E(Φ(Bi)) for all disjoint Bi (M)

Prop. For simple pp Φ of mean measure α: Φ has
smaller voids than Poisson ((V) holds true) if and only if
for all f ≥ 0

E
(

exp
[

−
∫

Rd f(x) Φ(dx)
])

≤ exp
[∫

Rd(e
−f(x) − 1)α(dx)

]

(*)
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Comparison to Poisson pp — Laplace ordering

Consider pp Φ having voids and moments smaller than
Poisson pp (of the same mean). We call them weakly
sub-Poisson (a weaker comparison than dcx).
P (Φ(B) = 0) ≤ e−E(Φ(B)) for all bBs B (V)

E

(

∏k
i=1 Φ(Bi)

)

≤
∏k
i=1 E(Φ(Bi)) for all disjoint Bi (M)

Prop. For simple pp Φ of mean measure α: Φ has
smaller voids than Poisson ((V) holds true) if and only if
for all f ≥ 0

E
(

exp
[

−
∫

Rd f(x) Φ(dx)
])

≤ exp
[∫

Rd(e
−f(x) − 1)α(dx)

]

(*)

Prop. For simple pp Φ of mean measure α: If Φ has
smaller moments than Poisson ((M) holds true) than (*)
holds for all f ≤ 0.
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Voids & percolation — a sufficient condition

An upper bound on rc using voids

rc = inf
{

r > 0 : ∀n ≥ 1,
∑

γ∈Γn

P (C(Φ, r) ∩Qγ = ∅) <∞
}

.

By Peierls argument

rc(Φ) ≤ rc(Φ).

Smaller voids imply
smaller rc(Φ)

0

r

1/n

γ

Qγ
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Moments & percolation — a necessary cond.

A lower bound on rc related to moments measures

rc(Φ) := inf
{

r > 0 : lim inf
m→∞

E(Nm(Φ, r)) > 0
}

.

By Markov inequality

rc(Φ) ≤ rc(Φ).

Smaller moments imply
larger(!) rc(Φ) 0−m m

m

−m
r

N  =m 3
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Clustering & percolation phase-transition

THM Let Φ be a stationary sub-Poisson pp on Rd (void
probabilities and moment measures smaller than for the
Poisson pp of some intensity λ) and rc(Φ) its critical
percolation radius on Gilbert graph. Then

0 <
1

(2dλ(3d − 1))1/d
≤ rc(Φ) ≤

√
d(log(3d − 2))1/d

λ1/d
<∞;

[BB-Yogeshwaran (2013)].
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Clustering & percolation phase-transition

THM Let Φ be a stationary sub-Poisson pp on Rd (void
probabilities and moment measures smaller than for the
Poisson pp of some intensity λ) and rc(Φ) its critical
percolation radius on Gilbert graph. Then

0 <
1

(2dλ(3d − 1))1/d
≤ rc(Φ) ≤

√
d(log(3d − 2))1/d

λ1/d
<∞;

[BB-Yogeshwaran (2013)]. Similar results for

k-percolation (percolation of k-covered subset) for dcx
sub-Poisson.

word percolation,

SINR-graph percolation (graph on a shot-noise
germ-grain model).
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Examples of sub- and super-Poisson processes

strongly (dcx)

Voronoi perturbed lattices with
replication kernel N ≤cx Pois, in
particular binomial, determinantal

negatively associated

binomial, determinantal(*)

weakly (voids and moments)

dcx sub-Poisson, negatively
associated, determinantal

sub-Poisson processes

strongly (dcx)

Poisson-Poisson cluster, Lévy based
Cox, mixed Poisson, Neyman-Scott
with mean cluster size 1, Voronoi
perturbed lattices with replication

kernel N ≥cx Pois.

associated

Poisson-center cluster, Neyman-Scott,
Cox associated with associated

intensity measure.

weakly (voids and moments)

dcx super-Poisson, associated,
permanental

super-Poisson processes

(*) Ghosh arXiv:1211.2435
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Counterexample: a super-Poisson pp withrc = 0

Poisson-Poisson cluster pp ΦR,δ,µα with annular clusters
Φα — Poisson (parent)
pp of intensity α on R2,
Poisson clusters of
total intensity µ, sup-
ported on annuli of radii
R− δ,R.

We have Φλ ≤dcx ΦR,δ,µα , where Φλ is homogeneous
Poisson pp of intensity λ = αµ.
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Counterexample: a super-Poisson pp withrc = 0

Poisson-Poisson cluster pp ΦR,δ,µα with annular clusters
Φα — Poisson (parent)
pp of intensity α on R2,
Poisson clusters of
total intensity µ, sup-
ported on annuli of radii
R− δ,R.

We have Φλ ≤dcx ΦR,δ,µα , where Φλ is homogeneous
Poisson pp of intensity λ = αµ.

Prop. Given arbitrarily small a, r > 0, there exist constants
α, µ, δ, R such that 0 < α, µ, δ,R <∞, the intensity αµ of
ΦR,δ,µα is equal to a and the critical radius for percolation
rc(Φ

R,δ,µ
α ) ≤ r. Consequently, one can construct

Poisson-Poisson cluster pp of intensity a and rc = 0. – p. 31



Concluding on clustering & percolation

Voids and moment measures allow for a simple
comparison of comparison of clustering properties of pp.
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Concluding on clustering & percolation

Voids and moment measures allow for a simple
comparison of comparison of clustering properties of pp.

We believe that these tools can be used to generalize
some results derived for Poisson to “more
homogeneous” (less clustering) — sub-Poisson pp.

We have seen examples regarding concentration
inequalities and phase transition in percolation.

Other clustering comparison tools?

Conjecture “clustering worsens percolation” is not true in
full generality, perhaps restricted to sub-Poisson pp.?
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For more details on clustering and percolation

BB, Yogeshwaran Directionally convex ordering of random

measures, shot-noise fields ... Adv. Appl. Probab. (2009)

BB, Yogeshwaran Clustering and percolation of point processes

EJP 2013.

BB, Yogeshwaran On comparison of clustering properties of point

processes Adv. Appl. Probab. (2014).

BB, Yogeshwaran Clustering comparison of point processes with

applications to random geometric models Stochastic Geometry,

Spatial Statistics and Random Fields ... (V. Schmidt, ed.) Lecture

Notes in Mathematics Springer (2014).
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ROUTING
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Routing in wireless networks, time added
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Medium Access Control (MAC)

Everybody can transmit, but not at the same time!
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Medium Access Control (MAC)

Everybody can transmit, but not at the same time!

The Medium Access Control (MAC) layer is a part of the
data communication protocol organizing simultaneous
transmissions in the network.
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Aloha MAC

No central authority in ad-hoc networks. One needs a
“decentralized” MAC.
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Aloha MAC

No central authority in ad-hoc networks. One needs a
“decentralized” MAC.

In our talk we will consider a very simple MAC scheme
called Aloha.

Consider slotted time n = 1, 2, . . ..
At each time slot n:
each node independently tosses a coin with some bias p.
if the outcome is heads it transmits at time n,
otherwise it does not transmit at time n and tries at time
n+ 1 (independently tossing a coin again).
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Aloha = independent thinning

Slotted Aloha ≡ independent thinning of the pattern of
nodes (at a given time slot).
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Aloha = independent thinning

Slotted Aloha ≡ independent thinning of the pattern of
nodes (at a given time slot).

Thinning is a nice operation on a p.p.
Thinning of Poisson p.p. Φ of intensity Λ(·) leads to

Poisson p.p. Φ1 of intensity pΛ(·) of the nodes allowed
for transmissions (at a given time slot),

Poisson p.p. Φ0 of intensity (1− p)Λ(·) of nodes not
allowed for transmission, they can serve as receivers at
this time slot,

with Φ1 and Φ2 being independent.
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SINR and successful transmissions

A given transmission is successful if the SINR is large
enough

SINR =
USEFUL SIGNAL RECEIVED POWER

ALL OTHER SIGNALS RECEIVED POWER (and/or) NOISE
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SINR and successful transmissions

A given transmission is successful if the SINR is large
enough

SINR =
USEFUL SIGNAL RECEIVED POWER

ALL OTHER SIGNALS RECEIVED POWER (and/or) NOISE

SINR: Signal-to-Interference-and-Noise Ratio
Interference: sum of the powers of signals received from all
concurrent transmissions.

– p. 39



Tuning Aloha Parameter p

It is important to tune the value of the Medium Access
Probability (MAP) p of Aloha so as to realize a compromise
between two extremal scenarios:
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p ≈ 1: to many concurrent (interfering) transmissions
highly likely failing, retransmissions needed, time is
wasted.
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Tuning Aloha Parameter p

It is important to tune the value of the Medium Access
Probability (MAP) p of Aloha so as to realize a compromise
between two extremal scenarios:

p ≈ 1: to many concurrent (interfering) transmissions
highly likely failing, retransmissions needed, time is
wasted.

p ≈ 0: too sparse authorized transmissions (which are
very likely successful), but most of the nodes wast time.

– p. 40



Shot-noise (SN)

Given a point process Φ = {Xi} on Rd and an i.i.d.
sequence {Li(·)} of random fields on Rd, the filed

I(y) :=
∑

i

Li(y −Xi) y ∈ R
d

is called a Shot-Noise of Φ.
SN is a natural model for the interference (sum of received
powers from transmitting nodes).
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Laplace transform of the shot-noise

The Laplace transform LI(y)(ξ) = E[e−ξI(y)] of I is related

to the Laplace functional LΦ(f) := E[e−
∫
f(x)Φ(dx)] of Φ.

– p. 42



Laplace transform of the shot-noise

The Laplace transform LI(y)(ξ) = E[e−ξI(y)] of I is related

to the Laplace functional LΦ(f) := E[e−
∫
f(x)Φ(dx)] of Φ.

In particular,
Fact: If Φ is Poisson p.p. of intensity Λ on Rd then

LI(y)(ξ) = exp
[

−
∫

Rd

(1− LL(y−x)(ξ)) Λ(dx)
]

,

where LL(z)(ξ) is the Laplace transform of the (marginal)
law of Li(z) at z.

Can be extended to joint Laplace transform of vectors
(I(y1), . . . , I(y2)).
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Transmission delay calculus
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Successful transmission fromx to y

Consider a node located at x ∈ R2 seeking to transmit to
y ∈ R2 in the presence of interfering nodes ψ = {yi ∈ R2}.
All nodes obey Aloha with MAP p. Assume independent
exponential (Rayleigh) fading F in all channels and power
law path-loss function l(r) = (Ar)β, β > 2.
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Successful transmission fromx to y

Consider a node located at x ∈ R2 seeking to transmit to
y ∈ R2 in the presence of interfering nodes ψ = {yi ∈ R2}.
All nodes obey Aloha with MAP p. Assume independent
exponential (Rayleigh) fading F in all channels and power
law path-loss function l(r) = (Ar)β, β > 2.

Node x can successfully transmit message to y provided x
and y are, respectively, selected and not selected by Aloha,
and SINR(x,y) ≥ T , where

SINR(x,y) =
F(x,y)/l(|x− y|)
W + Iψ0\{x}(y)

,

with Iψ0\{x}(y) =
∑

yi∈ψ0\{x} F(y,Xi)/l(|y −Xi|), ψ0 nodes
in ψ not selected by Aloha, F(y,z) fading from z to y.
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Probability of successful transmission

Fact: Probability of successful transmission from x to y in
one time slot is equal to

Π(x, y, ψ) = p(1− p)w(|x− y|)
∏

z∈ψ
h(|z − y|, |x− y|) ,

where
h(s, r) = 1− p

1
T (s/r)

β + 1
s, r ≥ 0,

w(s) = exp(−TW (As)β) s ≥ 0.
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Successful transmission probability, cont’d

Proof: Π(x, y, ψ) =

p(1− p)P
{

F(x,y)/l(|x− y|)≥T (W +
∑

z∈ψ
ezF(z,y)/l(|y − z|))

}

=p(1− p)e−TWl(|x−y|)
∏

z∈ψ
E
[

e−TezF(z,y)l(|x−y|)/l(|z−y|)]
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Successful transmission probability, cont’d

Proof: Π(x, y, ψ) =

p(1− p)P
{

F(x,y)/l(|x− y|)≥T (W +
∑

z∈ψ
ezF(z,y)/l(|y − z|))

}

=p(1− p)e−TWl(|x−y|)
∏

z∈ψ
E
[

e−TezF(z,y)l(|x−y|)/l(|z−y|)]

and E
[

e−TexF(z,y)l(|x−y|)/l(|z−y|)] (1)

= (1− p) + pE
[

e−TF(z,y)l(|x−y|)/l(|z−y|)] (2)

= 1− p

1
T

|z−y|β
|x−y|β + 1

, (3)

where we use the assumption that F is an exponential
random variable.
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(Local) successful transmission delay

After an unsuccessful transmission x tries to retransmit the
packet to y (respecting Aloha) possibly several times, until
the successful reception.
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All fading variables F and Aloha decisions independently
resampled for every time slot. Node positions x, y, ψ and
noise W constant in time.
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(Local) successful transmission delay

After an unsuccessful transmission x tries to retransmit the
packet to y (respecting Aloha) possibly several times, until
the successful reception.
All fading variables F and Aloha decisions independently
resampled for every time slot. Node positions x, y, ψ and
noise W constant in time.
Fact: The number of transmissions required to successfully
delivered the message from x to y is a geometric random
variable with mean

L(x, y, ψ) =
1

Π(x, y, ψ)

=
1

p(1− p)w
−1(|x− y|)

∏

z∈ψ
h−1(|z − y|, |x− y|) .
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Route delay

Consider a route R = {x0, x1, . . . , xn} of the packet sent
from x0 to xn via successive transmissions xk to xk+1.

– p. 48



Route delay

Consider a route R = {x0, x1, . . . , xn} of the packet sent
from x0 to xn via successive transmissions xk to xk+1.
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Route delay

Consider a route R = {x0, x1, . . . , xn} of the packet sent
from x0 to xn via successive transmissions xk to xk+1.
During the transmission(s) from xk to xk+1 other nodes of
the route R \ {xk, xk+1} act as interferers.
Assume a pattern of external (to the route) interfering nodes
ψ = {zi}; (R∩ ψ = ∅).
The route delay is the sum of the (independent, geometric)
local delays on successive transmissions from x0 to xn .
The average route delay is

L(R, ψ) :=

n−1
∑

k=0

L(xk, xk+1, ψ ∪R \ {xk, xk+1}) .
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The mean packet speed on the route

Denote the mean speed of packet progression on R

V (R, ψ) :=
|xn − x0|
L(R, ψ)
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The mean packet speed on the route

Denote the mean speed of packet progression on R

V (R, ψ) :=
|xn − x0|
L(R, ψ)

In what follows, we are mainly interested in the evaluation of
V , on long routes, i.e., when n→∞ and |xn − x0| → ∞,
under various probabilistic assumptions regarding random
R and ψ.
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Fixed route,
random external interferers
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Probability of successful transmission

Consider x, y as before and assume ψ (external interferers)
is a realization of a point process Ψ on R2, random but
constant in time.
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Probability of successful transmission

Consider x, y as before and assume ψ (external interferers)
is a realization of a point process Ψ on R2, random but
constant in time.
Fact: The probability of successful transmission is equal to

EΨ[Π(x, y,Ψ)]

=EΨ

[

p(1− p)w(|x− y|)
∏

z∈Ψ

h(|z − y|, |x− y|)
]

=
1

p(1− p)w(|x− y|)LΨ(−Hx,y)

where LΨ(·) is the Laplace transform of Ψ taken of the
non-negative function
−H(z) = −Hx,y(z) := − log(h(|z − y|, |x− y|)), z ∈ R2.
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Mean local delay

Similarly
Fact: The mean local delay is equal to

EΨ[L(x, y,Ψ)]

=EΨ

[ 1

p(1− p)w
−1(|x− y|)

∏

z∈Ψ

h−1(|z − y|, |x− y|)
]

=
1

p(1− p)w
−1(|x− y|)LΨ(Hx,y)

where LΨ(·) is the Laplace transform of Ψ taken of the
non-positive function
H(z) = Hx,y(z) := log(h(|z − y|, |x− y|)), z ∈ R2.
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Mean route delays

Similarly, for a deterministic route R = {x0, . . . , xn} as
before and point process of external interferers Ψ, the mean
route delay is equal to

EΨ[L(R,Ψ)] =
1

p(1− p)

n−1
∑

k=0

w−1(|xk − xk+1|)LΨ(Hxk,xk+1)

×
∏

z∈R\{xk,xk+1}
h−1(|z − xk+1|, |xk − xk+1|) .

with Hxk,xk+1 ≤ 0.

– p. 53



Interferers’ clustering paradox

Consider two (distributions of) interferers Ψ1, Ψ2, which are
Laplace transform ordered Ψ1 ≤LT Ψ2; i.e.,
LΨ1(f) ≤ LΨ2(f) for all functions f of constant sign.
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Interferers’ clustering paradox

Consider two (distributions of) interferers Ψ1, Ψ2, which are
Laplace transform ordered Ψ1 ≤LT Ψ2; i.e.,
LΨ1(f) ≤ LΨ2(f) for all functions f of constant sign.
Then

E[Π(x, y,Ψ1)] ≤E[Π(x, y,Ψ2)]
but also

E[L(x, y,Ψ1)] ≤E[Π(x, y,Ψ2)]
and

E[L(R,Ψ1)] ≤E[L(R,Ψ2)]

For Ψ1, successful transmission is less likely but delays are
smaller also!
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Clustering paradox, cont’d

Intuition: Ψ1 ≤LT Ψ2 means Ψ2 “clusters” more its points.
Clustered interfering nodes leave statistically large “void”
regions but also dense clusters

≤LT ≤LT
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Clustering paradox, cont’d

Intuition: Ψ1 ≤LT Ψ2 means Ψ2 “clusters” more its points.
Clustered interfering nodes leave statistically large “void”
regions but also dense clusters

≤LT ≤LT

Transmissions in voids (of interferers) are more likely
successful.
Transmissions in clusters of high density (of interferers)
experience many failures, making the expected delay larger
even if the probability of falling within a cluster is small.
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Poisson≤LT Poisson-line Cox

Consider ΨP homogeneous Poisson point process on R2,
intensity µ and
ΨPL Cox point process with 1D Poisson processes
distributed on Poisson-line process of the same mean
intensity.

Poisson Poisson-line Cox

ΨP ≤LT ΨPL .
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LT of Poisson and Poisson-line Cox

LP (f) = exp

(

−2πµ
∫ ∞

0

1− exp(−f(s))sds
)

,

LPL(f) = exp

(

−2ν
∫ ∞

0

1− e−2λ′
∫

∞

0
1−exp(−f(

√
s2+t2))dtds

)

,

where in for PL, ν the mean line-length per unit of surface
λ′ mean number of nodes per unit of line length.

If µ = λ′ν then LP (f) ≤ LPL(f), all f .
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Poisson-line route
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Poisson line

Suppose that R = Φ = {Xi} forms a Poisson point process
of intensity λ, on the line R. The notational convention is
such that Xi < Xi+1. Note that the Poisson assumption
means that the 1-hop distances Xi+1 −Xi are independent
(across i) exponential random variables with some given
mean 1/λ.
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Local Poisson-line delay

Denote

D1(p) = D1(p; T, β)

= T 1/β
(

∫ ∞

T−1/β

1

uβ + 1− p du+

∫ ∞

0

1

uβ + 1− p du
)

.
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Local Poisson-line delay

Denote

D1(p) = D1(p; T, β)

= T 1/β
(

∫ ∞

T−1/β

1

uβ + 1− p du+

∫ ∞

0

1

uβ + 1− p du
)

.

Prop.: The mean local delay on Poisson route is equal to

E0
[L0] := E0

[L(0, X1,Φ \ {0, X1})] =
1

p(1− p)(1− pD1(p))

provided
pD1(p) < 1

and E0
[L0] =∞ otherwise.
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Local Poisson-line delay

Prof: From the previous expression for L(x, y, ψ)

E0
[L(0, X1,Φ \ {0, X1})]

=
1

p(1− p)E0
[

∏

i,i 6=0,1

h−1(|Xi −X1|, |Xi −X1|)
]

.
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Local Poisson-line delay

Prof: From the previous expression for L(x, y, ψ)

E0
[L(0, X1,Φ \ {0, X1})]

=
1

p(1− p)E0
[

∏

i,i 6=0,1

h−1(|Xi −X1|, |Xi −X1|)
]

.

The proof follows by conditioning of the Palm probability P0

on X1 (exponential r.v.) and using the fact that given X1 = r,
the point process Φ \ {0, X1}, is Poisson with intensity λ on
∩((−∞, 0) ∪ (r,∞)) and 0 elsewhere and finally using the
known expression for Poisson Laplace transform.
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Long-distance Poisson-line speed

Denote by

v = lim
k→∞

|Xk −X0|
∑k
i=0 Li

,

where Li := L(Xi, Xi+1,Ψ \ {Xi, Xi+1}), the long-distance
speed of the packet progression on the Poisson-line route.
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Long-distance Poisson-line speed

Denote by

v = lim
k→∞

|Xk −X0|
∑k
i=0 Li

,

where Li := L(Xi, Xi+1,Ψ \ {Xi, Xi+1}), the long-distance
speed of the packet progression on the Poisson-line route.
Prop.: We have

v =
1

λE0
[L0]

=

{

p(1−p)(1−pD1(p))
λ provided pD1(p) < 1

0 otherwise.
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Poisson-line speed, cont’d
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Poisson-line speed, cont’d

Proof: The mean empirical speed during the first k hops is:

|X0 −Xk|
∑k−1
i=0 Li

=
(
∑k−1
i=0 (Xi+1 −Xi))/k

(
∑k−1
i=0 Li)/k

.
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Poisson-line speed, cont’d

Proof: The mean empirical speed during the first k hops is:

|X0 −Xk|
∑k−1
i=0 Li

=
(
∑k−1
i=0 (Xi+1 −Xi))/k

(
∑k−1
i=0 Li)/k

.

By the ergodic theorem for (marked ergodic) point
processes, When k→∞
the numerator tends almost surely to 1/λ,
the denominator tends almost surely to E0

[L0].
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Poisson-line route
with external noise

and/or 2D filed of external interferers
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Noise and external interferers

Consider a noise random variable W (one realization for all
time slots) and a point process Ψ on R2 of external
interferers. We assume that W,Ψ,Φ are independent. All
nodes, in Φ and Ψ obey Aloha with MAP p.
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Noise and external interferers

Consider a noise random variable W (one realization for all
time slots) and a point process Ψ on R2 of external
interferers. We assume that W,Ψ,Φ are independent. All
nodes, in Φ and Ψ obey Aloha with MAP p.

Prop.: The mean local delay is infinite, E0
[L0] =∞, provided

P(W > w) ≥ ǫ for some w, ǫ > 0,
or Ψ is super-Poisson in negative Laplace transform order
(has Laplace transforms of non-positive functions not smaller than a Poisson

point process).
In this case the speed of packet progression on long routes
is almost surely null.
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Why infinite?

Because it is possible to produce a heavy-tailed random
variable using a light-tailed variable sampler.
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Why infinite?
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Indeed, consider X and Y1, Y2, . . . , independent variables.
Say X ∼ Exp(a), Y1 ∼ Exp(b).
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Let L := mini{Yi ≥ X}.
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Why infinite?
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variable using a light-tailed variable sampler.
Indeed, consider X and Y1, Y2, . . . , independent variables.
Say X ∼ Exp(a), Y1 ∼ Exp(b).
Let L := mini{Yi ≥ X}.
Given X = x, L is geometric with mean (P{Yi ≥ x})−1 = ebx.
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Why infinite?

Because it is possible to produce a heavy-tailed random
variable using a light-tailed variable sampler.
Indeed, consider X and Y1, Y2, . . . , independent variables.
Say X ∼ Exp(a), Y1 ∼ Exp(b).
Let L := mini{Yi ≥ X}.
Given X = x, L is geometric with mean (P{Yi ≥ x})−1 = ebx.
Consequently

E[L] =

∫ ∞

0

e−axebx dx =

∫ ∞

0

e−(a−b)x dx ,

which is infinite if a < b.
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Why infinite?

Back to the original model: Poisson route has statistically
too large voids, which slow down (to zero) packet
progression in the presence of noise.
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Why infinite?

Back to the original model: Poisson route has statistically
too large voids, which slow down (to zero) packet
progression in the presence of noise.
Indeed, the distance to the nearest neighbour has tail e−λr.
Expected local delay such a distance without noise is
eλr pD1(p). If pD1(p) < 1 it is OK!
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Why infinite?

Back to the original model: Poisson route has statistically
too large voids, which slow down (to zero) packet
progression in the presence of noise.
Indeed, the distance to the nearest neighbour has tail e−λr.
Expected local delay such a distance without noise is
eλr pD1(p). If pD1(p) < 1 it is OK!
However, with noise W = w this delay increases by the
factor eTw(Ar)β . Recall β > 2.
Consequently

∫ ∞

0

e−λr+λrpD1(p)+Tw(Ar)β dr =∞ .

when w > 0.
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Why infinite?

External field Ψ of interferers increases the delay of the
transmission on the distance r by the factor
LHΨ (r) := LΨ(Hr(·)), with
Hr(x) = log(h(|x|, r)) = 1− p

1
T
(|x|/r)β+1

≤ 0.
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Why infinite?

External field Ψ of interferers increases the delay of the
transmission on the distance r by the factor
LHΨ (r) := LΨ(Hr(·)), with
Hr(x) = log(h(|x|, r)) = 1− p

1
T
(|x|/r)β+1

≤ 0.

In case of homogeneous Poisson Ψ we have
LHΨ (r) ∼ exp[r2p/(1− p)1−2/β × Const] for large r and
thus

∫∞
0
e−λr(1−pD1(p))LHΨ (r) dr =∞ for all p > 0.

– p. 69



Why infinite?

External field Ψ of interferers increases the delay of the
transmission on the distance r by the factor
LHΨ (r) := LΨ(Hr(·)), with
Hr(x) = log(h(|x|, r)) = 1− p

1
T
(|x|/r)β+1

≤ 0.

In case of homogeneous Poisson Ψ we have
LHΨ (r) ∼ exp[r2p/(1− p)1−2/β × Const] for large r and
thus

∫∞
0
e−λr(1−pD1(p))LHΨ (r) dr =∞ for all p > 0.

By the comparison to the Poisson case, this integral is
divergent for point processes Ψ which have larger Laplace
transforms of negative functions (cluster more).
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End-to-end transmissions on finite routes

Under two-point palm P 0M
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End-to-end transmissions on finite routes

Under two-point palm P 0M

E0M [L0M ] =
1

p(1− p)

(

e−λME(M) (a)

+

∫ M

0

λe−λrE(r)GM(0, r)dr (b)

+ λ

∫ M

0

∫ M−s

0

E(r)G0(s, r)GM(s, r)λe−λrdrds (c)

+ λ

∫ M

0

E(M − s)G0(s,M − s)e−λ(M−s)ds
)

(d)

with E(r) = eλprD1(p)eTW (Ar)βLH
Ψ (r), G0(s, r) = h(s+ r, r)−1 and

GM(s, r) = h(M − s− r, r)−1.
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Mean speed from0 to M with noiseW
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Mean speed from0 to M with interferers Ψ

Ψ Poisson
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density of interferers µ = λ′ν.
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Adding fixed relays

Consider regularly spaced “fixed” relay nodes
G = {n∆ + U∆, n ∈ Z}, where ∆ > 0 and U∆ is uniform r.v.
on [0,∆] (to make G stationary).
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Adding fixed relays

Consider regularly spaced “fixed” relay nodes
G = {n∆ + U∆, n ∈ Z}, where ∆ > 0 and U∆ is uniform r.v.
on [0,∆] (to make G stationary).

Nodes G are added to the Poisson route Φ, R := Φ ∪ G.

E0[L0] =
λ

p(1− p)(ǫ+ λ)

(

1

∆

∫ ∆

0

E(z)E′(z)e−λzeH(0,z)dz

+
λ

∆

∫ ∆

0

∫ z

0

E(r)E′(z)e−λreH(z−r,r)+log(h(z−r,r))drdz
)

+
ǫ

p(1− p)(ǫ+ λ)

(

λ

∆

∫ ∆

0

E(z)E′(z)e−λzeH(−z,z)dz

+e−λ∆B(∆)E(∆)eH(0,∆)−log(h(∆,∆))

)

with ǫ = 1
∆

and H(z, r) =
∑

n∈Z,n 6=0 log(h(n∆ + z, r)).
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Adding fixed relays

Consider regularly spaced “fixed” relay nodes
G = {n∆ + U∆, n ∈ Z}, where ∆ > 0 and U∆ is uniform r.v.
on [0,∆] (to make G stationary).

Nodes G are added to the Poisson route Φ, R := Φ ∪ G.

E0[L0] =
λ

p(1− p)(ǫ+ λ)

(

1

∆

∫ ∆

0

E(z)E′(z)e−λzeH(0,z)dz

+
λ

∆

∫ ∆

0

∫ z

0

E(r)E′(z)e−λreH(z−r,r)+log(h(z−r,r))drdz
)

+
ǫ

p(1− p)(ǫ+ λ)

(

λ

∆

∫ ∆

0

E(z)E′(z)e−λzeH(−z,z)dz

+e−λ∆B(∆)E(∆)eH(0,∆)−log(h(∆,∆))

)

with ǫ = 1
∆

and H(z, r) =
∑

n∈Z,n 6=0 log(h(n∆ + z, r)).

E0
[L0] <∞ hence long distance speed v = 1/E0

[L0] finite!
– p. 73



Mean speed on Poisson line with fixed relays
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Routing on the plane
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Problems in 2D

Which route? No natural notion of route R
in a given direction!
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Problems in 2D

Which route? No natural notion of route R
in a given direction!

For any reasonable route definition, R is a random subset of
point pattern Φ (depending on the routing algorithm). In
general, the typical point “seen” by the packet on a long
route is not the typical point of Φ in the sense of Palm theory!
So v 6= 1/E0

[L0]
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Problems in 2D

Which route? No natural notion of route R
in a given direction!

For any reasonable route definition, R is a random subset of
point pattern Φ (depending on the routing algorithm). In
general, the typical point “seen” by the packet on a long
route is not the typical point of Φ in the sense of Palm theory!
So v 6= 1/E0

[L0]

Unless the routing algorithm is a bijectif point map. Such
point maps are known to preserve palm distribution P0. But
no bujectif point map is known to be reasonable routing in a
given direction!
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Space-time SINR random graph

Assuming Aloha and independent exponential fading F
channels as before we define a graph that allows us to
“trace” in space and time all possible paths (routs) of
packets send in the model on 2D point process Φ.
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Space-time SINR random graph

Assuming Aloha and independent exponential fading F
channels as before we define a graph that allows us to
“trace” in space and time all possible paths (routs) of
packets send in the model on 2D point process Φ.

Nodes of this SINR graph G are all pairs
(

a point Xi ∈ Φ of the network , a time slot n
)

.

Directed edges of this oriented graph connect

all pairs (Xi, n)→ (Xj, n+ 1) whenever Xi can
successfully send packet to Xj at slot n,

and all pairs (Xi, n)→ (Xi, n+ 1),
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Space-time SINR random graph

Assuming Aloha and independent exponential fading F
channels as before we define a graph that allows us to
“trace” in space and time all possible paths (routs) of
packets send in the model on 2D point process Φ.

Nodes of this SINR graph G are all pairs
(

a point Xi ∈ Φ of the network , a time slot n
)

.

Directed edges of this oriented graph connect

all pairs (Xi, n)→ (Xj, n+ 1) whenever Xi can
successfully send packet to Xj at slot n,

and all pairs (Xi, n)→ (Xi, n+ 1),

i.e. all possible moves of a tagged packet from Xi at time n.
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SINR Graph G
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n+1

n

m

i ←space→
↓

time

• emitting nodes, ◦ non-emitting nodes (receives)
ցւ successful packet transmissions
↓ packet stays at the given node.
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First passage percolation problem

Existence and finiteness (or not) of the limit

minimal number of hops on G from node O to node D
Euclidean distance |O −D|

when |O −D| → ∞, called time constant.
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First passage percolation problem

Existence and finiteness (or not) of the limit

minimal number of hops on G from node O to node D
Euclidean distance |O −D|

when |O −D| → ∞, called time constant.

The number of hops on G in the numerator above,
corresponds to the end-to-end delay (from O to D); it is the
sum of the local delays at all nodes visited on the
shortest-time path by some tagged packet, which does not
experience any queuing at nodes before being scheduled for
transmission.

– p. 79



Three qualitative results in 2D

1. In in Poisson network without noise (W = 0)
EX,Y [LX,Y (0)] <∞ where LX,Y is the shortest (in
time) possible path from X to Y and EX,Y is two-point
Palm expectation.
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time) possible path from X to Y and EX,Y is two-point
Palm expectation.

2. In the presence of noise W > 0 in Poisson network the
end-to-end delay grows faster than the distance |O −D|
(time constant is infinite).
This is due to statistically too large voids in Poisson
process.
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Three qualitative results in 2D

1. In in Poisson network without noise (W = 0)
EX,Y [LX,Y (0)] <∞ where LX,Y is the shortest (in
time) possible path from X to Y and EX,Y is two-point
Palm expectation.

2. In the presence of noise W > 0 in Poisson network the
end-to-end delay grows faster than the distance |O −D|
(time constant is infinite).
This is due to statistically too large voids in Poisson
process.

3. Adding an arbitrarily sparse, stationary periodic
infrastructure of nodes (superposing it with Poisson p.p.)
makes end-to-end delay scale linearly with |O−D| (time
constant positive and finite).
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The reason for the negative result

The mean local exit time from the typical node (expected
time to leave the typical node) is infinite.
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Proof of the positive result with “extra relays”

Denote by p(x, y,Φ) the expected minimal time (number of
time-slots) to go from x ∈ R2 to y ∈ R2 using any path on
the SINR space-time graph on Φ.
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sub-additivity property

p(x, z,Φ) ≤ p(x, y,Φ) + p(y, z,Φ) .

By (a continuous version) of the Kingman’s sub-additive
ergodic theorem the limit called time constant exists.

In our case the constant is “not quite” constant since the
added periodic infrastructure of nodes is ergodic but not
mixing.
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Proof of the positive result with “extra relays”

Denote by p(x, y,Φ) the expected minimal time (number of
time-slots) to go from x ∈ R2 to y ∈ R2 using any path on
the SINR space-time graph on Φ. p(x, z,Φ) satisfies the
sub-additivity property

p(x, z,Φ) ≤ p(x, y,Φ) + p(y, z,Φ) .

By (a continuous version) of the Kingman’s sub-additive
ergodic theorem the limit called time constant exists.

In our case the constant is “not quite” constant since the
added periodic infrastructure of nodes is ergodic but not
mixing.

One has to work (using explicit expressions for the mean
one-hop delay in exponential fading case) to prove that this
limit is positive and finite.
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Yet another positive result

Achieving non-zero information propagation speed on 2D
Poisson process.
Individual Aloha and power control: in case of a long hop
node Xi makes less transmission attempts (decreases pi)
but increases the transmission power Pi keeping

pi × Pi = const.

[Iyer, Vaze 2015+]
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Concluding on routing

He have studied the performance of simple routing
algorithms on long routes in random environment.

Existence of statistically too large voids in 2D Poisson
process causes zero information propagation speed on
the time-space Aloha-SINR model with fixed Aloha
parameter p.

Individual choice of p by the nodes and power control
allows one to achieve a positive speed.

How about some less clustering processes (with smaller
void probabilities, e.g. determinantal)?
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For more details on routing

Baccelli, F., B.B. and Mirsadeghi, O. (2011). Optimal
paths on the space-time SINR random graph. Adv. Appl.
Probab.

B.B. and Muhlethaler, P. (2015). Random linear multihop
relaying in a general field of interferers using spatial
Aloha. IEEE Trans. Wireless Commun.
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Thank you for today.
Tomorrow: Capacity
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